

# Serum Homocysteine Levels Are Increased in Women With Gestational Diabetes Mellitus

Giuseppe Seghieri, Maria C. Breschi, Roberto Anichini, Alessandra De Bellis, Lorenzo Alviggi, Ivana Maida, and Flavia Franconi

**S**erum homocysteine (sHcy) has been found to be elevated in patients with type 2 diabetes mellitus, as well as in other clinical conditions associated with insulin resistance and/or vascular diseases. The aims of this study were to measure the relationship between sHcy with biohumoral markers of insulin resistance in pregnant women affected with gestational diabetes mellitus (GDM). We studied 2 groups of pregnant women categorized, after a 100-g, 3-hour oral glucose tolerance test (OGTT) as nondiabetic ( $n = 78$ ) or affected with GDM ( $n = 15$ ), by measuring sHcy, serum folate, albumin, vitamin B<sub>12</sub>, uric acid, and lipids. In both groups, peripheral insulin sensitivity was measured by using the OGTT-derived index of Matsuda and DeFronzo (ISI<sub>OGTT</sub>). Serum homocysteine was significantly higher in the group with GDM compared with nondiabetic women ( $5.88 \pm 2.26 \mu\text{mol/L}$  v  $4.45 \pm 1.52 \mu\text{mol/L}$ ;  $P = .003$ ), was inversely related to serum folate ( $r = -.48$ ;  $P = .0001$ ), and was significantly related to serum albumin ( $r = .27$ ;  $P = .009$ ), 2-hour plasma glucose ( $r = .25$ ;  $P = .01$ ), as well as to serum uric acid ( $r = .23$ ;  $P = .03$ ). No relationship was observed between sHcy and serum vitamin B<sub>12</sub>, serum triglycerides, total, or high-density lipoprotein (HDL) cholesterol, mean blood pressure and ISI<sub>OGTT</sub>. Vitamin B<sub>12</sub> was correlated with ISI<sub>OGTT</sub> ( $r = .36$ ;  $P = .0005$ ) and inversely with mean blood pressure ( $r = -.24$ ;  $P = .02$ ). GDM remained significantly associated with higher sHcy concentrations also after adjusting for age, serum folate, albumin, uric acid, ISI<sub>OGTT</sub>, and vitamin B<sub>12</sub> ( $P = .006$ ). In conclusion, we found that sHcy is significantly increased in women with GDM, independently of other confounding variables, is significantly related to 2-hour OGTT plasma glucose, and seems unrelated to insulin resistance in these subjects.

© 2003 Elsevier Inc. All rights reserved.

**S**ERUM HOMOCYSTEINE (sHcy) has previously been found to be reduced during pregnancy, and associated with adverse pregnancy outcomes or early pregnancy losses.<sup>1-4</sup> High levels of sHcy have been found to be associated with clinical conditions of insulin resistance, including type 2 diabetes mellitus or preeclampsia,<sup>5-7</sup> and there is evidence that sHcy is a major independent risk factor for vascular disease both in diabetic and nondiabetic subjects.<sup>5,8</sup>

Based on these premises, we studied the relationship between sHcy and glucose or insulin levels in pregnant women with normal glucose tolerance or gestational diabetes mellitus (GDM): conditions that are both physiologically or pathologically related to increased peripheral insulin resistance.

## SUBJECTS AND METHODS

This study included 93 pregnant women who consecutively performed during the last semester of the year 2001 a 100-g, 3-hour oral glucose tolerance test (OGTT) between the 24th and the 28th gestational week at the Outpatient Clinic of the Diabetes Unit of the Hospital of Pistoia according to a standardized program of the healthy authorities of the Region of Tuscany and in agreement with the recommendations of the American Diabetes Association.<sup>9</sup> According to this protocol a full 100-g, 3-hour OGTT should be performed in all women who are glucose intolerant to a previous 1-hour 50-g oral glucose

challenge or have other risk factors for GDM (history of glucose intolerance or of macrosomia during the previous pregnancies or history of diabetes in first-degree relatives). Both plasma glucose (Glucose GOD-PAP; Roche Diagnostic, Mannheim, Germany) and insulin measurements (Immunometric assay; DPC, Los Angeles, CA) were performed in all women at baseline and after 100 g glucose oral load at 60, 120, and 180 minutes. Homocysteine was measured at the OGTT baseline (Fluorescence Polarization ImmunoAssay; Abbott, Wiesbaden, Germany; coefficient of variation [CV] intra-assay, 2.2%; interassay, 3.8%) in serum samples after centrifugation for 10 minutes at  $3,000 \times g$  at 4°C. Blood samples were also obtained in all women to measure serum albumin (by nephelometric assay; Beckman, Fullerton, CA), folic acid and vitamin B<sub>12</sub> (Chemiluminescent ImmunoAssay; Bayer, Leverkusen, Germany; CV intra-assay, 3.1%; interassay, 4.2%), total and high-density lipoprotein (HDL)-cholesterol, uric acid, and triglycerides, which were assayed by standardized automated methods using common commercial kits.

Women who had taken oral folate supplements 2 weeks before the test were excluded. All women had hemoglobin values exceeding 110 g/L and were allowed to take iron supplementation as prescribed. GDM was diagnosed in 15 women using the criteria suggested by the American Diabetes Association.<sup>9</sup> Peripheral insulin sensitivity was graded by using the OGTT-derived insulin sensitivity index (ISI<sub>OGTT</sub>) of Matsuda and DeFronzo<sup>10</sup> obtained as follows: ISI<sub>OGTT</sub> =  $10,000/\text{square root}(f\text{asting plasma glucose [mg/dL]} \times f\text{asting plasma insulin [mU/L]} \times (m\text{ean glucose value during the OGTT} \times m\text{ean basal insulin value during the OGTT})$ . This index has recently been validated in pregnant women with or without GDM by comparing it with the euglycemic-hyperinsulinemic clamp.<sup>11</sup> The study was approved by the ethical committee of our Hospital.

## Statistical Analysis

Two-tailed unpaired Student's *t* test was used to calculate differences in mean values between diabetic and nondiabetic women. Univariate and multiple logistic regression analyses were performed to determine associative relationships between variables. Values are expressed as means  $\pm$  SD, and  $P < .05$  was considered significant. All statistical evaluations were performed using SAS package for personal computers (SAS Institute, Cary, NC).<sup>12</sup>

From the Departments of Internal Medicine, Obstetrics and Gynecology, and Diabetes Unit, Spedali Riuniti, Pistoia; and the Department of Pharmacology, University of Sassari, Sassari, Italy.

Submitted July 27, 2002; accepted December 16, 2002.

Presented at the 37th Annual Meeting of the European Association for the Study of Diabetes.

Address reprint requests to Giuseppe Seghieri, MD, Department of Internal Medicine, Spedali Riuniti, Via Monte Sabotino 96/A, 51100 Pistoia, Italy.

© 2003 Elsevier Inc. All rights reserved.

0026-0495/03/5206-0049\$30.00/0

doi:10.1016/S0026-0495(03)00032-5

Table 1. Main Characteristics of Pregnant Women

|                                          | Normal Glucose Tolerance (n = 78) | Gestational Diabetes Mellitus (n = 15) | P     |
|------------------------------------------|-----------------------------------|----------------------------------------|-------|
| Age (yr)                                 | 32.3 ± 3.7                        | 34.6 ± 3.1                             | .03   |
| Parity (no.)                             | 1.6 ± 0.8                         | 1.7 ± 0.9                              | NS    |
| Pregestational BMI (kg/m <sup>2</sup> )  | 23.2 ± 3.8                        | 23.8 ± 2.6                             | NS    |
| BMI at time of test (kg/m <sup>2</sup> ) | 26.3 ± 3.7                        | 26.7 ± 3.2                             | NS    |
| Gestational week of the test (no.)       | 29.2 ± 2.8                        | 28.7 ± 3.4                             | NS    |
| Mean blood pressure (mm Hg)              | 85.5 ± 6.9                        | 86.8 ± 5.6                             | NS    |
| OGTT 2-h plasma glucose (mmol/L)         | 7.8 ± 1.3                         | 10.7 ± 0.8                             | .0001 |
| OGTT 2-h plasma insulin (pmol/L)         | 746.9 ± 425.6                     | 1,208.2 ± 910.7                        | NS    |
| Serum albumin (g/L)                      | 35.4 ± 3.1                        | 34.5 ± 3.9                             | NS    |
| Serum triglycerides (mmol/L)             | 2.4 ± 0.8                         | 2.8 ± 1.3                              | NS    |
| Total cholesterol (mmol/L)               | 6.7 ± 1.1                         | 7.3 ± 1.2                              | NS    |
| HDL-cholesterol (mmol/L)                 | 1.6 ± 0.3                         | 1.6 ± 0.4                              | NS    |
| Serum uric acid (μmol/L)                 | 202.2 ± 47.6                      | 226 ± 53.5                             | NS    |
| ISI <sub>OGTT</sub> (mg/dL · min)        | 9.1 ± 3.6                         | 7.1 ± 2.8                              | .02   |
| Serum folate (nmol/L)                    | 31.3 ± 16.5                       | 33.3 ± 17.9                            | NS    |
| Serum vitamin B <sub>12</sub> (pmol/L)   | 234.5 ± 295.9                     | 160.4 ± 32.1                           | .005* |
| Serum homocysteine (μmol/L)              | 4.45 ± 1.52                       | 5.88 ± 2.26                            | .003  |

Abbreviations: BMI, body mass index; HDL, high-density lipoprotein; OGTT, oral glucose tolerance test; NS, not significant.

\*After log transformation.

## RESULTS

Women with GDM were older, had significantly higher 2-hour OGTT glucose, lower ISI<sub>OGTT</sub>, and serum vitamin B<sub>12</sub> (Table 1).

sHcy was significantly higher in the group of women with GDM (Table 1). As expected sHcy was inversely related to serum folate and was significantly related to serum albumin; it was, moreover, related to 2-hour OGTT glucose and to serum uric acid, as reported in Table 2, concerning the whole group of women. No relationship was observed between sHcy and serum vitamin B<sub>12</sub>, serum triglycerides, total or HDL-cholesterol, mean blood pressure, and ISI<sub>OGTT</sub>. Vitamin B<sub>12</sub> was significantly related to ISI<sub>OGTT</sub> ( $r = .36$ ;  $P = .0005$ ) and inversely to mean blood pressure ( $r = -.24$ ;  $P = .02$ ).

GDM remained significantly associated with higher sHcy, as well as inversely to ISI<sub>OGTT</sub> values, also after adjusting for age,

serum concentration of folates, albumin, uric acid, and vitamin B<sub>12</sub> by means of a multiple logistic model (Table 3). Similarly, after a multiple regression model, 2-hour OGTT glucose was significantly linearly related to sHcy, independently from other possible confounders, such as serum albumin, uric acid, and folates ( $P = .0017$ ;  $R^2 = .404$ ).

## DISCUSSION

The mean value of sHcy changes during normal gestation, and the sHcy concentrations in our population are, on average, very similar to the mean sHcy concentration reported at 20 to 28 weeks' gestation by Walker et al<sup>1</sup> in a Canadian population ( $4.3 \pm 1 \mu\text{mol/L}$ ). Nonetheless, according to our study, sHcy is significantly increased in women with GDM, and it is unlikely that this increase is due to possible differences in exogenous oral folate supplementation or in serum albumin, the 2 major mechanisms previously recognized to modulate sHcy during normal pregnancy.<sup>1</sup>

Table 2. Correlation Coefficients ( $r$ ) of Univariate Regressions Relating sHcy to Other Variables in the Whole Group of Women

|                               | Correlation Coefficient $r$ | P     |
|-------------------------------|-----------------------------|-------|
| Age                           | 0.16                        | NS    |
| Parity                        | 0.0003                      | NS    |
| Prepregnancy BMI              | 0.03                        | NS    |
| BMI at time of test           | -0.05                       | NS    |
| OGTT 2-h plasma glucose       | 0.25                        | .01   |
| OGTT 2-h plasma insulin       | 0.02                        | NS    |
| Serum folates                 | -0.48                       | .0001 |
| Serum vitamin B <sub>12</sub> | -0.17                       | NS    |
| Serum triglycerides           | 0.04                        | NS    |
| Total cholesterol             | 0.17                        | NS    |
| HDL-cholesterol               | -0.06                       | NS    |
| Serum uric acid               | 0.23                        | .03   |
| Serum albumin                 | 0.27                        | .009  |
| Mean blood pressure           | 0.08                        | NS    |
| ISI <sub>OGTT</sub>           | 0.02                        | NS    |

Table 3. Multiple Regression Logistic Model Indicating the Relationship Between GDM and sHcy Adjusted for Serum Folates, Albumin, and Prevailing Insulin Sensitivity

|                               | Parameter Estimate | P    |
|-------------------------------|--------------------|------|
| Intercept                     | 5.415              | .05  |
| Age                           | 0.074              | NS   |
| sHcy                          | 0.359              | .006 |
| Serum folates                 | 0.052              | NS   |
| Serum vitamin B <sub>12</sub> | 0.000              | NS   |
| Serum albumin                 | -0.462             | NS   |
| Serum uric acid               | 0.234              | NS   |
| ISI <sub>OGTT</sub>           | -0.131             | .01  |

NOTE. GDM scored as present (1) or absent (0) is the dependent variable (y) in the model.

Abbreviations: GDM, gestational diabetes mellitus; sHcy, serum homocysteine.

The modest increase in sHcy in women with GDM (1.4  $\mu\text{mol/L}$ , about 30% of the mean value of nondiabetic women) does not allow any conclusion about the biologic significance of such a modification. Neither is it possible to draw conclusions about any putative influence of this small sHcy increase in eventually worsening the pregnancy outcomes, as no previous study has related the risk of adverse pregnancy outcomes with sHcy levels measured during the gestation period when, as above mentioned, they are, on average, much lower than out of pregnancy. It should be noted, however, that similar increments in sHcy have been described in patients with type 2 diabetes or in pre-eclampsia when compared with unaffected control subjects.<sup>13,14</sup>

The question whether sHcy can be considered a simple marker of GDM or whether sHcy may cause deterioration of glucose tolerance remains unanswered by this study, similarly to other previously published studies, which have been unable to clarify whether increased levels of sHcy may somehow cause or, on the contrary, simply be a marker of hypertension, pre-eclampsia, or diabetes and its complications.<sup>13-15</sup> Only well-designed intervention trials with folic acid supplementation will be able to give more exhaustive explanations about this point.

Our data suggest that sHcy is related to after load glycemic levels as expressed by the 2-hour OGTT glucose concentrations. This seems to be in disagreement with a previous report by Kaplan et al<sup>16</sup> describing no relationship between plasma Hcy and metabolic control (expressed as glycated hemoglobin) in pregnant women affected with both type 1 and type 2 diabetes. Nevertheless, it is difficult to compare our findings with those of Kaplan et al due to major differences in the study design. The final impression, which arises from the results of these studies, however, is that sHcy in pregnant women seems to be more related to postload glucose excursions than to mean metabolic control as monitored by glycated hemoglobin values.

## REFERENCES

1. Walker MC, Smith GN, Perkins SL, et al: Changes in homocysteine levels during normal pregnancy. *Am J Obstet Gynecol* 180:660-664, 1999
2. Bonnette RE, Caudill MA, Boddie AM, et al: Plasma homocyst(e)ine concentrations in pregnant and nonpregnant women with controlled folate intake. *Obstet Gynecol* 92:167-170, 1998
3. Vollset SE, Refsum H, Irgens LM, et al: Plasma total homocysteine, pregnancy complications, and adverse pregnancy outcomes: The Hordaland Homocysteine study. *Am J Clin Nutr* 71:962-968, 2000
4. Nelen WL, Blom HJ, Steegers EA, et al: Homocysteine and folate levels as risk factors for recurrent early pregnancy loss. *Obstet Gynecol* 95:519-524, 2000
5. Buyschaert M, Dramais AS, Wallemacq PE, et al: Hyperhomocysteinemia in type 2 diabetes: Relationship to macroangiopathy, nephropathy, and insulin resistance. *Diabetes Care* 23:1816-1822, 2000
6. Laivuori R, Kaaja R, Turpeinen U, et al: Plasma homocysteine elevated and inversely related to insulin sensitivity in preeclampsia. *Obstet Gynecol* 93:489-493, 1999
7. Sorensen TK, Malinow MR, Williams MA, et al: Elevated second-trimester serum homocysteine levels and subsequent risk of preeclampsia. *Gynecol Obstet Invest* 48:98-103, 1999
8. Chambers JC, Seddon MD, Shah S, et al: Homocysteine—A novel risk factor for vascular disease. *J R Soc Med* 94:10-13, 2001
9. American Diabetes Association: Clinical practice recommendations 2001. *Diabetes Care* 24:S77-79, 2001 (suppl 1)
10. Matsuda M, DeFronzo RA: Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. *Diabetes Care* 22:1462-1470, 1999
11. Kirwan JP, Huston-Presley H, Kalhan SC, et al: Clinically useful estimates of insulin sensitivity during pregnancy. *Diabetes Care* 24:1602-1607, 2001
12. SAS Software. SAS/STAT Guide for Personal Computers, version 6. Cary, NC, SAS Institute Inc, 1987
13. Emoto M, Kanda H, Shoji T, et al: Impact of insulin resistance and nephropathy on homocysteine in type 2 diabetes. *Diabetes Care* 24:533-538, 2001
14. Cotter AM, Molloy AM, Scott JM, et al: Elevated plasma homocysteine in early pregnancy: A risk factor for the development of severe preeclampsia. *Am J Obstet Gynecol* 185:781-785, 2001
15. Sheu WH, Lee WJ, Chen YT: Plasma homocysteine concentrations and insulin sensitivity in hypertensive subjects. *Am J Hypertens* 13:14-20, 2000
16. Kaplan JS, Iqbal S, England BG, et al: Is pregnancy in diabetic women associated with folate deficiency? *Diabetes Care* 22:1017-1021, 1999
17. Godsland IF, Rosenkiewicz JR, Proudler AJ, et al: Plasma total homocysteine concentrations are unrelated to insulin sensitivity and

components of the metabolic syndrome in healthy men. *J Clin Endocrinol Metab* 86:719-723, 2001

18. Abbasi F, Facchini F, Humphreys MH, et al: Plasma homocysteine concentrations in healthy volunteers are not related to differences in insulin-mediated glucose disposal. *Atherosclerosis* 146:175-178, 1998
19. Fonseca VA, Mudaliar S, Schmidt B, et al: Plasma homocysteine concentrations are regulated by acute hyperinsulinemia in nondiabetic but not type 2 diabetic subjects. *Metabolism* 47:686-689, 1998
20. Hoogeveen EK, Kostense PJ, Eysink PE, et al: Hyperhomocysteinemia is associated with the presence of retinopathy in type 2 diabetes mellitus: The Hoorn study. *Arch Intern Med* 160:2984-2990, 2000
21. Jager A, Kostense PJ, Nijpels G, et al: Serum homocysteine levels are associated with the development of microalbuminuria: The Hoorn study. *Arterioscler Thromb Vasc Biol* 21:74-81, 2001
22. Powers RW, Evans RW, Majors AK, et al: Plasma homocysteine concentration is increased in preeclampsia and is associated with evidence of endothelial activation. *Am J Obstet Gynecol* 179:1605-1611, 1998
23. Knock GA, McCarthy AL, Lowy C, et al: Association of gestational diabetes with abnormal maternal vascular endothelial function. *Br J Obstet Gynaecol* 104:229-234, 1997
24. Kaaja R, Laivuori H, Laakso M, et al: Evidence of a state of increased insulin resistance in preeclampsia. *Metabolism* 48:892-896, 1999
25. Martinez Abundis E, Gonzalez Ortiz M, Quinones Galvan A, et al: Hyperinsulinemia in glucose-tolerant women with preeclampsia. A controlled study. *Am J Hypertens* 9:610-614, 1996
26. Rajkovic A, Catalano PM, Malinow MR: Elevated homocysteine levels in preeclampsia. *Obstet Gynecol* 90:168-171, 1997
27. Sanchez SE, Zhang C, Rene Malinow M, et al: Plasma folate, vitamin B12, and homocysteine concentrations in preeclamptic and normotensive Peruvian women. *Am J Epidemiol* 153:474-480, 2001